
i

Scheduling and Robust Invariance in Networked Control Systems
Masoud Bahraini, Mario Zanon, Paolo Falcone, and Alessandro Colombo

Abstract— In Networked Control Systems (NCS), impairments
of the communication channel can be disruptive to stability and
performance. In this paper, we consider the problem of scheduling
the access to limited communication resources for a number of
decoupled systems subject to state and input constraints, whose
loops need to be closed over the network. The schedule must
be designed to robustly preserve the invariance property of each
system, which in turn guarantees constraint satisfaction. To that
end, we first focus on systematic offline scheduling design to
preserve robust invariance, and afterwards on online scheduling
design with the aim of improving performance and compensating
for packet losses while guaranteeing recursive schedulability.

Index Terms— Networked control systems, Robust invari-
ance, Packet loss, Multi-channel scheduling

I. INTRODUCTION

Recent progress in wireless communication technologies has pro-
vided new opportunities but also new challenges to control theorists.
On the one hand, the use of communication in the control loop has
several benefits, such as reduced system wiring, ease of maintenance
and diagnosis, and ease of implementation [1]. On the other hand,
wireless links are subject to noise, time varying delay, packet loss,
jitter, limited bandwidth, and quantization errors, which are not
negligible in the stability and performance analysis. Feedback control
systems that are closed through a network are called networked
control systems (NCS). An important open issue for NCS is the
design of communication and control strategies which guarantee that
the state remains in an invariant set—a compact subset of its state
space—over an infinite time horizon.

The problem of keeping the state in an invariant set in the presence
of uncertainties was introduced more than four decades ago [2],
[3]. Since then, reachability analysis has been exploited in different
applications, e.g., in model checking and safety verification to ensure
the system does not enter an unsafe region [4]–[6]. Reachability
analysis has several applications in model predictive control, such
as terminal set design, recursive feasibility [7], and robust invariant
set computation [8]. However, the available results do not directly
apply to the case in which the control loop is closed over a non-
ideal communication network. There exist techniques to deal with
some network imperfections. An H∞ filter based on hidden Markov
models is designed in [9] for a class of discrete Markov jump linear
systems with additive noise when the communication channel is
subject to packet losses. A resilient estimation problem is discussed
in [10], where redundant communication channels with packet losses
described by a Bernoulli probability distribution are used in parallel
to improve reliability. A review of recent advances in the filed is given
in [11]. To the best of our knowledge, no result covers the case in
which a central decision maker is in charge of suitably deciding which
node can communicate measurement data or control inputs through

This work was partially supported by the Wallenberg Artificial Intel-
ligence, Autonomous Systems and Software Program (WASP) funded
by Knut and Alice Wallenberg Foundation. Masoud Bahraini is with
Chalmers University of Technology, Göteborg, Sweden (e-mail: ma-
soudb@chalmers.se). Mario Zanon is with IMT School for Advanced
Studies Lucca, Italy. Paolo Falcone is with Chalmers University of
Technology and DIEF, Università di Modena e Reggio Emilia, Italy .
Alessandro Colombo is with Politecnico di Milano, Italy.

Plant

Observer

A S

Controller

<latexit sha1_base64="W05y4fHDvVPO/BKhR2wwSsQzzvQ=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbsUahmwEasI5gOSI+xt9pIle3vn7pwQjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDPz209cGxGrB5wk3I/oUIlQMIpW6lR6Ay6RVvqlslt15yCrxMtJGXI0+qWv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/N752Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLQheMsvr5JWrepdVt37Wrl+l8dRgFM4gwvw4ArqcAsNaAIDCc/wCm/Oo/PivDsfi9Y1J585gT9wPn8AT2mPgw==</latexit>

�
<latexit sha1_base64="W05y4fHDvVPO/BKhR2wwSsQzzvQ=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbsUahmwEasI5gOSI+xt9pIle3vn7pwQjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDPz209cGxGrB5wk3I/oUIlQMIpW6lR6Ay6RVvqlslt15yCrxMtJGXI0+qWv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/N752Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex5MhCaM5QTSyjTwt5K2IhqytBGVLQheMsvr5JWrepdVt37Wrl+l8dRgFM4gwvw4ArqcAsNaAIDCc/wCm/Oo/PivDsfi9Y1J585gT9wPn8AT2mPgw==</latexit>

�

Fig. 1: Feedback loop for each node, which is closed through shared
communication channels. The communication traffic is regulated by
a central decision maker and specified by decision variable δ.

the common communication network, see Fig. 1, in order to keep the
states of all nodes within given admissible sets. This is, e.g., a model
of remotely sensed and actuated robotic systems based on CAN
communication, or of remote multi-agent control setups for intelligent
transportation systems field testing. A connection between this setting
and a classical scheduling problem, called pinwheel problem (PP)
[12], [13], has been shown in [14], where the invariance problem
is translated into a scheduling problem for single-channel networks.
This work was followed up in [15] with an online version of the
scheduling algorithm, to improve performance and provide robustness
against packet losses and in [16] by jointly designing control and
schedule. In this paper, we tackle a more general framework which
includes more general couplings of system dynamics and network
communications, as well as multi-channel networks.

We study scheduling design to guarantee invariance for NCS con-
sisting of uncertain constrained systems and multiple communication
channels with packet loss. The main contributions of this study,
which complements the results in [14]–[16], include (i) allowing
one to model communication constraints on both measurements
and controls; (ii) modeling an arbitrary number of channels; (iii)
accounting for the fact that different nodes may have access to a
different number of channels; (iv) accounting for stochastic packet
loss; (v) tackling feedback loops with a dynamic controller and a state
observer. Moreover, we prove that the invariance / scheduling problem
is decidable in finite time and we propose improved scheduling
algorithms to solve it.

The rest of the paper is organized as follows. In Section II,
the problem is formulated and relevant mathematical background is
stated. Our main contributions are divided into an offline and an
online strategy, presented in Section III and Section IV, respectively.
Examples and numerical simulations are provided in Section V.

II. PROBLEM STATEMENT AND BACKGROUND

In this section, we introduce the framework on which this pa-
per’s results will be based. Our objective is to elucidate the rela-
tions between communication and control for NCS where measure-
ments and/or control signals may travel through the communication
medium, with static or dynamic control laws, and at the same time
describe systems where the scheduler has direct access to the full
state information of the nodes, or where the state is only inferred
through an observer. To cover all these cases under as compact a
notation as possible, we proceed as follows.

ii

With reference to Fig. 1, we define a binary variable δi for each
node i, which defines the fact that the node’s sensor and/or actuator be
connected (when δi = 1) or disconnected (when δi = 0). We consider
both cases where both sensors and actuators are simultaneously
connected and disconnected (as in Fig. 1), and cases where only
sensors or actuators can be disconnected (Fig. 1, by removing one of
the two switches).

For each node, xi, x̂i and ui denote the state of the plant, the state
of the observer and the state of the controller, respectively. Note that
in NCS the controller typically has memory to cope with packet loss.
The discrete-time dynamics of the nodes are described by

z+i =

{
Fi
(
zi, vi

)
, if δi = 1

F̂i
(
zi, vi

)
, if δi = 0

(1)

with

Fi :=

fi(zi, vi)gi
(
zi
)

ci
(
zi
)
 , F̂i :=

f̂i(zi, vi)ĝi
(
zi
)

ĉi
(
zi
)
 , zi :=

xix̂i
ui

 , (2)

where zi ∈ Xi × Xi × Ui ⊆ Rni × Rni × Rri denotes the system
states and vi ∈ Vi ⊂ Rp denotes an external disturbance. The two
dynamics correspond to the connected mode, i.e., δi = 1 and the
disconnected mode, i.e., δi = 0.

In order to represent a wide variety of network topologies, includ-
ing single and multi-channel networks, and networks where different
number of channels are available at different nodes, we introduce the
concept of connection pattern. In mathematical terms, a connection
pattern C ∈ C is an ordered tuple of the indices of the nodes which
can be simultaneously connected, i.e.,

C := (c1, . . . , cm), m < q, ci ∈ Iq1, ∀ i ∈ Im1 . (3)

Throughout the paper, we denote the connection pattern selected at
time t as C(t), and the schedule of selected connection patterns as
C = C(0), C(1), . . ., where C(t) might have different cardinalities
at different t. Consequently,

i ∈ C(t)⇔ δi(t) = 1. (4)

For example, C(t) = (1, 5) means that only nodes 1 and 5 are
connected at time t, i.e., δ1(t) = 1, δ5(t) = 1, δj(t) = 0, j /∈ {1, 5}.

We can now formulate the control task as follows.

Problem 1 (P1). Design a communication allocation such that the
node state zi remains inside an admissible set Ai ⊂ Xi × Xi × Ui
at all time, for all i ∈ Iq1.

In order to translate P1 into a scheduling problem, we define the
concept of safe time interval.

Set Si ⊂ Xi × Xi × Ui is robust invariant for (1) in connected
mode, i.e., δi = 1, if

Fi(zi, vi) ∈ Si, ∀ zi ∈ Si, vi ∈ Vi. (5)

Any robust invariant set Si contains all forward-time trajectories of
the node (1) in the connected mode, provided zi(0) ∈ Si, regardless
of the disturbance vi. Let {Si} be the set of all robust invariant sets of
(1) that are contained in the admissible set Ai. We call Si,∞ ∈ {Si}
the maximal robust invariant set:

Si ⊆ Si,∞, ∀Si ∈ {Si}. (6)

We define the 1-step reachable set as the set of states zi that can
be reached in one step from a set of initial states Oi with dynamics
Hi ∈ {Fi, F̂i}:

Reach
Hi
1 (Oi) := {Hi(zi, vi) : zi ∈ Oi, vi ∈ Vi}. (7)

The t-step reachable set, t = 2, . . . is defined recursively as

Reach
Hi
t (Oi) := Reach

Hi
1 (Reach

Hi
t−1(Oi)). (8)

Numerical tools for the calculation of Si,∞ and Reach
Hi
t (Oi) can

be found in [17], for linear Hi.

Definition 1 (Safe time interval). We define the safe time interval
for node i as

αi := 1 + max
τ

{
τ : Reach

F̂i
τ (Reach

Fi
1 (Si,∞)) ⊆ Si,∞

}
. (9)

Essentially, αi counts the amount of time steps during which node
i can be disconnected while maintaining its state in Si,∞, provided
that its initial state is in Si,∞. Note that, by definition of Si,∞, node
i remains in Si,∞ for all future times when connected.

The task of keeping the state of each node in its admissible set
can now be formulated as follows.

Problem 2 (P2). Given the set of q nodes, each described by (1),
an admissible set A := A1 × . . .×Aq , and the set C of connection
patterns (3), determine if there exists an infinite sequence over the
elements of C such that

zi(t) ∈ Si,∞, ∀zi(0) ∈ Si,∞, vi(t) ∈ Vi, i ∈ Iq1, t > 0.

In other words, we seek an infinite sequence of connection patterns

C := C(0), C(1), . . . , (10)

with C(t) ∈ C that keeps (xi, x̂i, ui) of all q nodes within Si,∞
despite the fact that, due to the structure of set C, at each time step
some nodes are disconnected. Note that the set C is assumed to be
fixed and given a priori, based on the network structure.

A schedule solving P2 is any sequence of C such that every node
i is connected at least once every αi steps. More in general, given a
scheduling problem P, a schedule C that solves P is called a feasible
schedule for that problem. We write that instance I is accepted by P,
denoted

I ∈ P, (11)

if and only if a feasible schedule C exists for the problem.
We now introduce two classic scheduling problems whose solution

we will use, in Theorem 2 and 3, to construct schedules solving P2.

Pinwheel Problem (PP) (From [18]). Given a set of integers {αi}
with αi ≥ 1, determine the existence of an infinite sequence of the
symbols 1, . . . , q such that there is at least one symbol i within any
subsequence of αi consecutive symbols.

With C(t) ∈ Iq1, a schedule solving PP can be defined as

C := C(1), C(2), (12)

Conditions for schedulability, i.e., existence of a feasible schedule
for PP, have been formulated in terms of the density of a problem
instance I , defined as

ρ(I) :=
∑
i

1

αi
. (13)

Proposition 1 (From [19], [20]). Given an instance I := {αi} of PP,
if ρ(I) > 1 then I /∈ PP, if ρ(I) ≤ 0.75 then I ∈ PP, if ρ(I) ≤ 5

6
and there exists i : αi = 2 then I ∈ PP, if ρ(I) ≤ 5

6 and I has only
three symbols then I ∈ PP, if ρ(I) ≤ 1 and I has only two symbols
then I ∈ PP.

It has been conjectured that any instance of PP with ρ(I) ≤ 5
6 is

schedulable; however, the correctness of this conjecture has not been
proved yet, see [12]. Determining whether a general instance of PP
with 5

6 < ρ(I) ≤ 1 is schedulable, is not possible just based on the

iii

density ρ(I) (e.g., ρ({2, 2}) = 1 is schedulable and ρ({2, 3, 12}) =
11
12 is not schedulable). Furthermore, determining the schedulability
of dense instances, i.e., when ρ(I) = 1, is NP-hard in general [13].

Since a schedule for PP is an infinite sequence of symbols, the
scheduling search space is also infinite dimensional. Fortunately, the
following proposition alleviates this issue.

Proposition 2 (Theorem 2.1 in [13]). All instances of PP that admit
a schedule admit a cyclic schedule, i.e., a schedule whose symbols
repeat periodically.

Proposition 2 is paramount for the derivation of our results, since
it allows us to restrict our attention to cyclic schedules without any
loss of generality.
WSP is a more general version of PP, where multiple symbols can
be scheduled at the same time. We call channels the multiple strings
of symbols that constitute a Windows Schedule.

Windows Scheduling Problem (WSP) (From [21]). Given the
set of integers {αi} with αi ≥ 1, determine the existence of an
infinite sequence of ordered tuples with mc ≥ 1 elements of the
set {1, . . . , q} such that there is at least one tuple that contains the
symbol i within any subsequence of αi consecutive tuples.

An instance {mc, {αi}} of WSP is accepted, denoted

I = {mc, {αi}} ∈ WSP, (14)

if and only if there exists a feasible schedule

C = C(1), C(2), . . . , with C(t) = (c1(t), . . . , cmc(t)) . (15)

WSP is equivalent to PP when mc = 1. Similarly to PP, if a
schedule for the WSP exists, then a cyclic schedule exists as well.
Furthermore, the following schedulability conditions are known.

Proposition 3 (From [21]). Given an instance I = {mc, {αi}} of
WSP, if ρ(I) > mc then I /∈ WSP , if ρ(I) ≤ 0.5mc then I ∈ WSP.

The results on WSP used next rely on special schedules of a
particular form, defined as follows.

Definition 2 (Migration and perfect schedule, from [21], [22]). A
migrating symbol is a symbol that is assigned to different channels
at different time instants of a schedule. A schedule with no migrating
symbols is called a perfect schedule.

An instance I := {mc, {αi}} of WSP is accepted with a perfect
schedule if and only if there exists a feasible schedule C such that

ci(t1) = ck(t2) =⇒ i = k, (16)

for any i, k ∈ Imc
1 and t1, t2 ∈ N; we denote this as:

I ∈ WSP-perfect. (17)

By (16), nodes do not appear on different channels of the schedule.
In the following sections we construct tools for offline and online

scheduling of systems of the form (1), (2), based on the results
introduced above. Specifically, in Algorithm 1, using Theorems 1
and 2 we provide an offline solution for P2 in its most general form.
Theorem 1 also proves, without loss of generality, that the schedule
is periodic. Then, in Theorem 3, we link P2, in the special case where
all nodes have access to the same number of communication channels,
to WSP. This allows us to define a faster algorithm (Algorithm 2)
to compute an offline schedule for P2 in these cases, based on
Theorem 4. Finally, Algorithm 3 computes an online schedule which
is resilient to stochastic packet loss, using Theorem 5 and the offline
schedules defined before.

III. OFFLINE SCHEDULING

In this section, we first prove that P2 is decidable, i.e., there is
an algorithm that determines whether an instance is accepted by
the problem [23], and we provide an exact solution algorithm and
a heuristic to find a feasible schedule. Then, we show that in case
that all the nodes share a fixed number of communication channels,
the scheduling problem is equivalent to the WSP, we propose a new
algorithm to solve this scheduling problem, and we refute a standing
conjecture regarding perfect schedules in WSP [22].

A. Solution of P2
Consider sequence C as the schedule for P2, and define sequence

D := D(1), D(2), . . . (18)

where the ordered tuple D(t) defined as

D(t) := (d1(t), d2(t), . . . , dq(t)) , (19)

with di(t) := t− τCi (t). The latest connection time is defined as

τCi (t) := max{t′ ≤ t : i ∈ C(t′)}, (20)

where t′ := 0 when the above set is empty.

Lemma 1. The schedule C is feasible for P2 if and only if 0 ≤
di(t) ≤ αi − 1, ∀i ∈ Iq1, ∀t > 0.

Proof. If C is a feasible schedule, then 0 ≤ di(t) ≤ αi − 1 for
∀i ∈ Iq1, ∀t > 0 by construction. The converse implies that node i is
connected at least once every (1 + maxt di(t)) ≤ αi time instants,
which implies C is a feasible schedule.

Theorem 1. Consider the set of integers {αi} defined in (9). If P2
has a feasible schedule C, then it also has a cyclic schedule whose
period is no greater than m =

∏q
i=1 αi.

Proof. We define D as in (19), so that 0 ≤ di(t) ≤ αi − 1 holds
by Lemma 1. Hence, each di(t) can have no more than αi different
values. This implies D(t) can have at most m :=

∏q
i=1 αi different

values. Hence,

∃ t1, t2 : D(t1) = D(t2), m ≤ t1 < t2 < 2m. (21)

Now, consider the sequence Cr := C(t1), C(t1 + 1), . . . , C(t2− 1)
as the cyclic part of the cyclic schedule Cc for P2, defined as Cc :=
Cr,Cr, Define Dc as in (18) for the new schedule Cc. One can
conclude that

Dc(τ) ≤ D(τ + t1 − 1), ∀τ ∈ It2−t11 , (22)

since for any i ∈ Iq1 we have

dci(τ) = τ−τCc
i = (τ+ t1−1)−(τCc

i + t1−1) ≤ di(τ+ t1−1).

Furthermore, D(t1) = D(t2) implies i ∈ Cr for ∀i ∈ Iq1. As a
result, dci(t2 − t1) = di(t2 − 1). This implies

dci(k(t2 − t1) + τ) = di(t1 − 1 + τ), k ∈ N. (23)

Since di(t) ≤ αi− 1 holds for any t > 0, then dci(t) ≤ αi− 1 also
holds for any t > 0. Inequality dci(t) ≤ αi − 1 implies that Cc is
a feasible schedule by Lemma 1.

Theorem 1 implies that a feasible schedule can always be searched
for within the finite set of cyclic schedules of a length no greater than
m. An important consequence of this theorem is the following.

Corollary 1. Schedulability of P2 can be decided in a finite time.

Proof. Using Theorem 1, the search space can be limited to a finite
set and schedules can be finitely enumerated.

iv

Theorem 1 allows us to solve P2 by solving the following opti-
mization problem, which searches for a feasible periodic schedule
among all schedules of period Tr .

min
C(1),...,C(Tr),Tr

Tr (24a)

s.t. C(1), . . . , C(Tr) ∈ C, (24b)

Tr ≤
q∏
i=1

αi, Tr ∈ N, (24c)

t+αj−1∑
k=t

ηj(k) ≥ 1, ∀j ∈ Iq1, ∀t ∈ ITr1 , (24d)

ηj(k) =

{
1 if j ∈ C(k mod Tr),

0 otherwise.
(24e)

Note that we define C(0) := C(Tr) in (24e). Equation (24b) enforces
the schedule elements to be chosen from the set of connection patterns
C; (24c) limits the search space by giving an upper bound for the
length of the periodic part, i.e., Tr; and (24d) ensures that label i
appears at least once in each αi successive elements of the schedule.

Note that the main challenge in Problem (24) is finding a feasible
solution; minimization of Tr is a secondary goal since any solution
of (24) provides a feasible schedule for P2. Unfortunately, (24e) is
combinatorial in the number of nodes and connection patterns. In
order to tackle this issue, we propose next a strategy to simplify the
computation of a feasible schedule: a heuristic to solve P2 based on
the assumption that the satisfaction of the constraints for a node i
is a duty assigned to a single connection pattern Cj . To give some
intuition on the assignment of connection patterns, we propose the
following example.

Example 1. Consider a network with connection patterns: C1 :=
(1, 2), C2 := (2, 4), C3 := (3, 4), C4 := (5) and safe time intervals
α1 = 10, α2 = 2, α3 = 10, α4 = 2, α5 = 100.

Let us attempt a schedule using only C1, C3, C4. In this
case, one can see that the sequence C1, C3, C1, C3, . . . is the only
possible schedule satisfying the requirements of systems 2 and
4. There is however no space to connect system 5 within this
schedule. Alternatively, one can utilize C1, C2, C3, C4 and design
C2, C1, C2, C3, C2, C4 as the cyclic part of a feasible schedule.

In the second case, the duty of satisfying the constraints for systems
2 and 4 is assigned to C2, while systems 1 and 3 are assigned to C1

and C3, respectively. As a consequence, C2 must be scheduled every
2 steps, but C1 and C3 can be scheduled once every 10 steps. This
allows one to make space for C4. Borrowing the terminology of the
PP, with the first choice C1 and C3 are symbols of density 0.5 and
C4 has density 0.01.

Example 1 shows how we assign duties to the connection patterns,
and also how it can affect the schedulability. Let us represent the
assignment of node i to the connection pattern Cj with a binary
variable ηi,j and—with a slight abuse of notation—the density of
symbol Cj with ρ̂j . The proposed strategy is to decide the set of
ηi,j such that

∑
j ρ̂j is minimized. This is performed by solving

min
ρ̂j , ηi,j

l∑
j=1

ρ̂j (25a)

s.t. ρ̂j ≥
1

αi
ηi,j , ∀j ∈ Il1, ∀i ∈ Cj , (25b)∑

j:i∈Cj

ηi,j ≥ 1, ∀i ∈ Iq1, (25c)

ηi,j ∈ {0, 1}, ∀i ∈ Iq1, ∀j ∈ Il1. (25d)

Algorithm 1 A heuristic scheduling for P2
1: Define α̂i as in (26) by solving the optimization problem (25)
2: find a schedule CP for instance {α̂i} of PP using (24) or any other

suitable scheduling technique
3: define C(t) := Cj given CP(t) = j
4: return C := C(1), C(2), . . .

Constraint (25c) guarantees that every node i is connected by at
least one connection pattern. Variables ρ̂j bound the density of the
resulting scheduling problem, where 1/ρ̂j is the maximum number
of steps between two occurrences of connection pattern Cj in C
that is sufficient to enforce (xi, x̂i, ui) ∈ Si,∞. If ρ̂j = 0, then
connection pattern j is not used. Without loss of generality, assume
that the solution to (25) returns l distinct connection patterns with
ρ̂ > 0, i.e., ρ̂1, . . . , ρ̂l > 0 and define

α̂i :=
1

ρ̂i
, ∀i ∈ Il1. (26)

Theorem 2. {α̂i} ∈ PP =⇒ {C, {αi}} ∈ P2.

Proof. Consider schedule CP which is feasible for the instance {α̂i}
of PP. Define the schedule C by C(t) := Cj given CP(t) = j for
any j. By the statement of PP, CP(t) = j once at least in every α̂j
successive time instants. By (25), for all i there exists Cj such that
i ∈ Cj and αi ≥ α̂i. Hence, C is a feasible schedule for P2.

Using Theorem 2, we summarize in Algorithm 1 how to find a
feasible schedule for P2. As shown by the following example, the
converse of Theorem 2 does not hold in general, i.e., if Algorithm 1
does not find a schedule a feasible schedule may still exist for P2.

Example 2. Consider five nodes with α1 = α3 = 3, α2 = α4 =
α5 = 5 and C := {C1, C2, C3, C4} where

C1 = (1, 2), C2 = 3, C3 = 4, C4 = (1, 5). (27)

Using (25), one obtains α̂1 = α̂3 = 5, and α̂2 = α̂4 = 3. There is no
feasible schedule for this problem considering the assigned density
function ρ̂({3, 3, 5, 5}) = 16

15 , see Proposition 1. However, one can
verify that the following schedule is feasible

Cc := Cr,Cr, . . . , Cr := C1, C2, C4, C2, C3. (28)

B. Solution of P2 in the mc-channel case
In the previous subsection, C was an arbitrary set of connection

patterns. Assume now that the set C is

C := {C : C ⊆ Iq1, |C| = mc}, (29)

i.e., the set of all subsets of Iq1 with cardinality mc. This is a special
case of P2 where any combination of mc nodes can be connected
at the same time. One application of such case is for instance when
the connection patterns model a multi-channel star communication
topology between a set of nodes and a central controller. This class
of problems is easily mapped to the class of WSP:

Theorem 3. When C is as in (29), then

{C, {αi}} ∈ P2 ⇐⇒ {mc, {αi}} ∈ WSP. (30)

Proof. By definition, any schedule solving P2 must satisfy i ∈
C(t) ⇒ i ∈ C(t + τ) with τ ≤ αi for all i, t. Provided that
|C(t)| = mc for all t, this also defines a schedule solving WSP.

We exploit this result to solve P2 indirectly by solving WSP. To that
end, we propose a heuristic which replaces WSP with a PP relying
on modified safe time intervals defined as

α̃i := mcαi, ∀i ∈ Iq1. (31)

v

Theorem 4. {α̃i} ∈ PP =⇒ {mc, {αi}} ∈ WSP.

Proof. Given a feasible schedule CP for PP, CP(t) = i at least once
every α̃i = mcαi successive time instants. Define schedule C using

C(t) := (CP(mc(t− 1) + 1), . . . , CP(mct)) . (32)

In this schedule, i ∈ C(t) at least once every αi successive time
instants. This implies that C is a feasible schedule for WSP.

Theorem 4 can be used to find a feasible schedule for WSP using
a feasible schedule for PP. However, the converse does not hold: if
this method does not find a feasible schedule, a feasible schedule
for WSP may still exist. Nevertheless, Lemma 2 provides a sufficient
condition to determine that there exists no feasible schedule for WSP.
Without loss of generality, assume α1 ≤ α2 ≤ . . . ≤ αq and define

ζi :=

{
mcαi i ≤ mc

mcαi + (mc − 1) i > mc
. (33)

Lemma 2. {ζi} /∈ PP =⇒ {mc, {αi}} /∈ WSP.

Proof. We proceed by contradiction. Assume {mc, {αi}} ∈ WSP
with a corresponding feasible schedule C, while {ζi} /∈ PP. Without
loss of generality, assume that the labels i ∈ Imc

1 are arranged in C(t)
so as to satisfy

i ∈ C(t) =⇒ ci(t) = i, (34)

while labels i ∈ Iqmc+1 are arranged in an arbitrary order. Construct
a schedule CP as

CP = c1(1), . . . , cmc(1), . . . , c1(t), . . . , cmc(t), (35)

If {ζi} /∈ PP, then there exists a t0 > 0 and an i ∈ Iq1 such that
the sequence (CP(t0), . . . , CP(t0 + ζi − 1)) does not contain label
i, where CP(t0) is the entry ck(t) of C. A pair of integers (t, k)
can be found such that t ≥ 0, k ∈ Imc

1 , and t0 = mc(t− 1) + k.
Consider the case i ∈ Imc

1 . By (33) we have ζi = mcαi, such
that the sequence CP(t0), . . . , CP(t0 + ζi − 1) contains exactly αi
vectors C(t), . . . , C(t + αi − 1) if k = 1, or spans αi + 1 vectors
C(t), . . . , C(t + αi) if k > 1. Hence, if k ≤ i, by (34) one can
conclude i /∈ C(t), . . . , C(t + αi − 1), while if k > i, by (34),
i /∈ C(t+ 1), . . . , C(t+αi). In both cases C is not feasible, which
contradicts our assumption.
Consider the case i ∈ Iqmc . By (33) we have ζi = mc(αi + 1)− 1,
such that the sequence CP(t0), . . . , CP(t0 + ζi − 1) contains αi
subsequent vectors of the schedule C that do not contain label i. This
implies that C is not a feasible schedule, which is a contradiction.

By Theorem 4 one can find a schedule for an instance of WSP
using a schedule for an instance of PP. A common approach proposed
in the literature consists in restricting the search to perfect schedules.
We prove next that our heuristic returns a feasible schedule if a perfect
schedule exists; in addition, it can also return non-perfect schedules.
As we will prove, cases exist when the WSP does not admit a perfect
schedule while it does admit a non-perfect one. We will provide such
example and show that our heuristic is able to solve it.

The following lemma provides a sufficient condition to exclude
existence of a perfect schedule. An immediate corollary of this lemma
and of Theorem 4 is that the heuristic in Theorem 4 can schedule all
WSP instances that admit a perfect schedule.

Lemma 3. {α̃i} /∈ PP =⇒ {mc, {αi}} /∈ WSP-perfect.

Proof. Assume C is a perfect schedule for WSP. Then, ci(t) =
cj(t
′) = k implies i = j for all i, j ∈ Imc

1 and k ∈ Iq1. Consider the
sequence CP as in (35) where t ≥ 1. Since C is a perfect schedule,
ci(t) = ci(t

′) = k for every k ∈ Iq1. Furthermore, |t − t′| ≤ αk

Algorithm 2 A heuristic scheduling for WSP
1: Define α̃i as in (31)
2: find the feasible schedule CP for instance {α̃i} of PP
3: define C(t) := (CP(mc(t− 1) + 1), . . . , CP(mct))
4: return C := C(1), C(2), . . .

implies CP(t1) = CP(t2) = k with t1 = mc(t − 1) + i, t2 =
mc(t

′−1)+i. Hence, |t1−t2| = mc|t−t′| ≤ mcαk. Consequently,
CP is a feasible schedule for PP.

The following example shows that the converse of Theorem 4 does
not hold in general, i.e., ∃ {mc, {αi}} ∈ WSP while {α̃i} /∈ PP.
This also indicates the importance of non-perfect schedules.

Example 3 (Converse of Theorem 4). Consider problem instance

{mc, {αi}} = {2, {2, 3, 3, 4, 5, 5, 10}}. (36)

While {α̃i} /∈ PP, a schedule with the cyclic part

Cr =C1, C2, C3, C4, C5, C6, C1, C7, C8, C9,

C5, C9, C3, C10, C1, C6, C5, C11, C8, C2 , (37)

is feasible for WSP where

C1 = (1, 2), C2 = (3, 4), C3 = (1, 6), C4 = (2, 5),

C5 = (1, 3), C6 = (4, 7), C7 = (3, 6), C8 = (1, 5),

C9 = (2, 4), C10 = (3, 5), C11 = (2, 6). (38)

Remark 1. Since {α̃i} /∈ PP in Example 3, {mc, {αi}} /∈
WSP-perfect by Lemma 3. However, {mc, {αi}} ∈ WSP which
provides a negative answer to an open problem in the scheduling
community, i.e., whether all feasible instances of WSP admit perfect
schedules too, see [22].

The next example provides a case in which {α̃i} ∈ PP while
{mc, {αi}} /∈ WSP-perfect. This implies that the proposed heuristic
for WSP can return feasible schedules for instances in which there
is no perfect schedule.

Example 4. Consider the problem instance

{mc, {αi}} = {2, {2, 3, 4, 5, 5, 5, 7, 14}}. (39)

In order to find a perfect schedule, one can first compute all possible
allocations of nodes to two channels and verify that {mc, {αi}} /∈
WSP-perfect. However, a schedule with the following cyclic part is
feasible for instance {α̃i} of PP

2, 3, 4, 1, 7, 6, 2, 1, 5, 3, 2, 1, 4, 3, 6, 1, 2, 5, 7, 1, 4, 3, 2, 1, 6, 8, 5, 1.

This schedule can be transformed into a feasible schedule for WSP
with the cyclic part

Cr =(2, 3), (4, 1), (7, 6), (2, 1), (5, 3), (2, 1), (4, 3),

(6, 1), (2, 5), (7, 1), (4, 3), (2, 1), (6, 8), (5, 1). (40)

Algorithm 2 computes (possibly non-perfect) schedules for WSP,
by checking whether {α̃i} is accepted by PP or not. Since:
• {α̃i} ∈ PP =⇒ {mc, {αi}} ∈ WSP,
• {α̃i} /∈ PP =⇒ {mc, {αi}} /∈ WSP-perfect,
• ∃ {mc, {αi}} : {α̃i} ∈ PP, {mc, {αi}} /∈ WSP-perfect,

Algorithm 2 outperforms the current heuristics in the literature in the
sense that it accepts more instances of WSP.

While ρ(I) ≤ 0.5mc is a sufficient condition for schedulability of
WSP [21], we provide alternative, less restrictive sufficient conditions
in the following theorem.

Proposition 4. Given an instance I = {mc, {αi}} of WSP,

vi

1) if ρ(I) ≤ 0.75mc then I ∈ WSP,
2) if ρ(I) ≤ 5

6mc and I has only three symbols then I ∈ WSP.

Proof. We rely on (31) and Theorem 4 to convert WSP into PP, so
that Proposition 1 delivers the desired result.

IV. ONLINE SCHEDULING

The schedules proposed in Section III are computed offline, i.e.,
solely based on the information available a priori. Note that any
offline schedule is conservative, since it is designed to cope with all
admissible disturbances and it cannot exploit available knowledge
of current state. Moreover, packet losses require at least a basic
adaptation of the offline schedule. In an online schedule, available
knowledge of past and current states can be exploited to refine the
schedule based on the available information. In the following, we
design a technique to adapt online a schedule computed offline to
exploit the available state information. We first consider the case of
no packet losses; we then show how the extension to the case of
packet losses can be done with minimal modifications.

A. Online Scheduling without Packet Loss

In this subsection we show, under the assumption of no packet loss,
how the schedule can be optimized online. Our strategy is to start
with a feasible offline schedule, which we call the baseline schedule.
Such schedule is then shifted based on estimates of the safe time
intervals, which are built upon the available knowledge of past and
current states. In fact, while in equation (9) the safe time interval is
defined as the solution of a reachability problem with Si,∞ as the
initial set, the scheduler may have a better set-valued estimate of the
current state of each node than the whole Si,∞. This estimate, which
we call Oi, can in general be any set with the following properties,
for all t ≥ 0:

(xi(τ), x̂i(τ), ui(τ)) ∈ Oi(τ), ∀τ ∈ It0, (41a)

Oi(t) ⊆ Si,∞, if δi = 1, (41b)

Oi(t) ⊆ Reach
F̂i
1 (Oi(t− 1)). (41c)

Based on set Oi(t), we can compute an estimate of the safe time
interval. Let us define this estimate, function of t, as follows:

γxi (t) := max

{
t′ : Reach

F̂i
t′ (Oi(t)) ⊆ Si,∞

}
. (42)

Equations (9) and (42) imply that, for any feasible schedule C,

γxi (t) ≥ αi − (t− τCi (t)), ∀i ∈ Iq1, ∀ t > 0. (43)

For any arbitrarily defined schedule Co, we define

γCo
i (t) := min{t′ ≥ t : i ∈ Co(t′)} − t, (44)

which measures how long node i will have to wait, at time t, before
being connected. Using (42) and (44), we specify a condition under
which the schedule Co is feasible.

Definition 3 (Online feasible schedule). A schedule Co is online
feasible if the safety residuals r(Co, t) defined as

ri(Co, t) := γxi (t)− γCo
i (t) ≥ 0, ∀i ∈ Iq1, (45)

with γxi (t) defined in (42) and γCo
i (t) defined in (44).

In the job scheduling literature (e.g., [24]), the quantities γCi
correspond to the completion times of job i, the quantities γxi are
the deadlines, and the quantity γCi − γ

x
i = −ri is the job lateness.

A schedule for q jobs with deadlines is feasible provided that the
maximum lateness (safety residual) is non-positive.

In the following, we formulate an optimization problem to find a
recursively feasible online schedule using safety residuals and shifts
of the baseline schedule. Given a cycle Cr := C(1), . . . , C(Tr) of
the baseline schedule, let

R(Cr, j) := C(j), . . . , C(Tr), C(1), . . . , C(j − 1) (46)

be a rotation of the sequence Cr with j ∈ ITr1 .
We define the online schedule

C∗(t) := C(j∗t), (47)

as the one maximizing the minimum safety residual by solving

j∗t := arg max
j

min
i

ri(R(Cr, j), t). (48)

Proposition 5. Assume that the cyclic baseline schedule C is feasible
for P2. Then, the online schedule C∗ is feasible for P2.

Proof. At time t = 1, the baseline schedule is feasible, i.e.,
mini ri(R(Cr, 1), 1) ≥ 0. As a result, mini ri(R(Cr, j

∗
1), 1) ≥ 0

by construction and schedule C̃, defined as

C̃ := C(j∗1), . . . , C(Tr),Cr,Cr, . . . , (49)

is a feasible schedule. Since C∗(1) = C(j∗1), mini ri(R(Cr, j
∗
1 +

1), 2) ≥ 0, which implies mini ri(R(Cr, j
∗
2), 2) ≥ 0. Consequently,

C̃ := C(j∗1), C(j∗2), C(j∗2 + 1), . . . , C(Tr),Cr, . . . , (50)

is a feasible schedule. This argument can be used recursively which
implies C∗ is a feasible schedule.

Remark 2. The schedule (47) maximizes the minimum residual, as
shown in (48). That is, the communication is scheduled for the system
which is closest to exit Si,∞. Clearly, any function of the residuals
could be used. For example, the residuals could be weighted, thus
reflecting the priority given to the constraints to be satisfied.

B. Robustness Against Packet Loss
In this subsection, we drop the assumption of no packet loss in

the communication link and we consider a communication protocol
which has packet delivery acknowledgment. We provide the necessary
and sufficient conditions for the existence of robust schedules in
the presence of packet losses. Then, using these and the results in
Section IV-A, we provide an algorithm to compute an online schedule
that is robust against packet losses. Let us consider the stochastic
binary variable ν(t) ∈ {0, 1}, with ν(t) = 1 indicating that the
packet sent at time t was lost. This binary variable is known to the
scheduler, since we assume an acknowledgment-based protocol.

Assumption 1. No more than nl,i packets are lost in any αi
consecutive steps, i.e.,

t+αi−1∑
j=t

ν(j) ≤ nl,i, ∀ i ∈ Iq1, ∀ t ≥ 0. (51)

We observe that (51) defines q different inequalities which must be
satisfied at the same time. Additionally, we assume that when a packet
is lost, the whole information exchanged at time t is lost. Note that
Assumption 1 defines a stochastic packet loss model with bounded
support. In case Assumption 1 does not hold, robust invariance
cannot be guaranteed. This is a fundamental issue which cannot be
circumvented. However, if (51) holds with probability less than 1, one
should be able to prove a weaker form of robust invariance, which
only holds in probabilistic terms.

Problem 3 (P3). Given the set of q nodes, each described by (1),
an admissible set A := A1 × . . .×Aq , and the set C of connection

vii

patterns (3), determine if there exists an infinite sequence over the
elements of C such that, if Assumption 1 holds, for t > 0 we have

zi(t) ∈ Si,∞, ∀zi(0) ∈ Si,∞, vi(t) ∈ Vi, i ∈ Iq1.

A schedule solving P3 is any sequence of C such that every node
i is connected at least once every αi steps in the presence of packet
losses satisfying Assumption 1. Instance I := {C, {αi}, {nl,i}} is
accepted, i.e., I ∈ P3, if and only if a schedule C exists that satisfies
the scheduling requirements. Given a feasible baseline schedule C, to
compensate the effects of packet losses, we define a shifted schedule
C̄ as

C̄(t) := C
(
t−

t−1∑
j=0

ν(j)
)
. (52)

We define the maximum time between two successive connections
of node i, under schedule C as

Ti :=
(
1 + max

t
t− τCi (t)

)
, (53)

where the latest connection time τCi (t) is defined in (20). Feasibility
of the baseline schedule implies Ti ≤ αi, for all i.

Assumption 1 can be used to provide a sufficient condition for the
shifted schedule C̄ to be feasible under packet losses.

Proposition 6 (From [15]). Let Assumption 1 be verified. Sched-
ule C̄ defined in (52) is feasible for P3 if and only if

αi − Ti ≥ nl,i, ∀i ∈ Iq1. (54)

Proof. In the error-free schedule C, two consecutive appearances of
a symbol i are at most Ti steps apart. In the schedule C̄, during αi
steps at most nl,i retransmissions take place. Hence, if αi−Ti ≥ nl,i,
two consecutive occurrences of symbol i are never spaced more than
αi steps, ensuring feasibility of the schedule.

In the sequel, we provide necessary and sufficient conditions for
the existence of a baseline schedule which is robust against packet
losses. To that end, we define a new set of safe time intervals as{

βi : βi = αi − nl,i, ∀i ∈ Iq1
}
. (55)

Theorem 5. Assume that the communication network satisfies As-
sumption 1. Then, βi defined in (55) yields

{C, {αi}, {nl,i}} ∈ P3 ⇔ {C, {βi}} ∈ P2.

Proof. We first prove {C, {αi}, {nl,i}} ∈ P3 ⇒ {C, {βi}} ∈
P2. Assume that there exists a feasible schedule for instance
{C, {αi}, {nl,i}} of P3 while it is not feasible for instance {C, {βi}}
of P2. This implies

∃ i, t > 0 : t− τCi (t) ≥ βi + 1 = αi − nl,i + 1, (56)

where the latest connection time τCi (t) is defined in (20). Assume
nl,i consecutive packets are lost starting from time t + 1, such that
τCi (t + nl,i) = τCi (t). This implies

(
t+ nl,i

)
− τCi (t + nl,i) ≥

αi+1, such that node i did not receive any packet for αi consecutive
steps, i.e., {C, {αi}, {nl,i}} /∈ P3.
In order to prove {C, {βi}} ∈ P2 =⇒ {C, {αi}, {nl,i}} ∈ P3,
consider feasible schedule C for instance {C, {βi}} of P2. Each
packet loss causes one time step delay in data communication for
node i, see (52), and since these packet losses can at most cause
nl,i time step delays between two connection times, node i would
be connected at least once during each βi + nl,i = αi time steps.
This implies C̄ defined in (52) is a feasible schedule for instance
{C, {αi}, {nl,i}} of P3.

Algorithm 3 Robust online scheduling for P2
1: Define βi using (55)
2: find a schedule CP for instance {βi} of PP
3: define C(t) := Cj when CP(t) = j, ∀j
4: for all t do
5: find C̄∗(t) by solving (59)
6: end for

Theorem 5 implies that P3 can be cast in the framework of P2
by using equation (55) to define {βi} based on {αi} and {nl,i}.
Algorithm 3, returns an online robust feasible schedule for P3.

Since the shifted schedule C̄ provides a feasible robust schedule
against packet losses, one can use the online scheduling method
proposed in the previous subsection to improve safety of this robust
schedule. To that end, we define the number of packet losses that can
occur before node i receives a measurement from time t as

nCi (t) := min
t′,n

n : t′ ≥ t, i ∈ C(t′),
t′∑
j=t

ν(j) ≤ n. (57)

Definition 4. A schedule C is robust online feasible if the robust
safety residuals r̄(C, t) defined as

r̄i(C, t) := γxi (t)− γCi (t)− nCi (t), ∀i ∈ Iq1, (58)

are non-negative for all t, with γxi (t) defined in (42), γCi (t) defined
in (44), and nCi (t) defined in (57).

Similarly to the case with no packet loss, we compute the online
schedule C̄∗(t) := C(j̄∗t) by solving

j̄∗t := arg max
j

min
i

r̄i(R(Cr, j), t). (59)

Proposition 7. Assume that the baseline schedule C̄ is feasible for
P3. Then, the online schedule C̄∗(t) is feasible for all t.

Proof. Follows mutatis mutandis from Propositions 5 and 6.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms 1 and 2, respectively.

Consider 1000 networks with a random number of nodes (2 to 11),
random safe time intervals (2 to 21), and random connection patterns
(1 to 11). These random instances are used for evaluating the three
following implementations:

• M1: solve optimization problem (24);
• MA1

2 : use Algorithm 1 in combination with optimization prob-
lem (24) to solve PP;

• MA1
3 : use Algorithm 1 in combination with the double-integer

method proposed in [12] to solve PP.

We have used Gurobi to solve the integer problems and provided
a summary of the results in Table I. M1 is exact and returns false
positives nor false negatives. Although MA1

2 and MA1
3 do not return

any false positive, they might return false negatives. Furthermore, a
false negative answer in MA1

2 implies the same for MA1
3 since the

latter uses a heuristic to solve PP while the former finds a schedule
for PP whenever it exists. Note also that MA1

2 and MA1
3 do not

necessarily return a solution with the minimum period length. To
limit the computation-time, we had to halt the execution of M1 and
MA1

2 when no schedule of period ≤ 70 was found. We labeled
undecided the instances for which these two methods were halted.

viii

TABLE I: Comparison of M1, MA1
2 , and MA1

3

M1 MA1
2 MA1

3
accepted instances 887 872 853
average time (sec) 1.7915 1.3119 0.5143

undecided instances 102 32 0
average time (sec) 61.0570 48.9156 0
rejected instances 11 96 147
average time (sec) 53.7730 1.5442 0.5333

Although MA1
3 might result in a few false negatives, Table I

indicates that its average computation time is significantly lower than
the corresponding average computation times of M1 and MA1

2 .
Next, we evaluate the proposed heuristic in Algorithm 2 to find

a feasible schedule for P2 when C is defined as in (29). We have
generated 1000 networks with a random number of nodes (from2 to
11), random safe time intervals (from 2 to 21), and the necessary
number of channels needed for schedulability, i.e., mc = d

∑
i

1
αi
e.

These random instances are used for evaluating the three following
implementations:
• M1: solve optimization problem (24);
• MA2

2 : use Algorithm 2 in combination with optimization prob-
lem (24) to solve PP;

• MA2
3 : use Algorithm 2 in combination with optimization prob-

lem (24) to solve PP;
Once again, we have halted the solver in M1 and MA2

2 cases if
no schedule of length ≤ 70 was found. The results are reported in
Table II.

TABLE II: Comparison of M1, MA2
2 , and MA2

3

M1 MA2
2 MA2

3
accepted instances 984 980 909
average time (sec) 5.0353 5.5204 1.3043e-04

undecided instances 16 20 0
average time (sec) 267.1501 139.8464 0
rejected instances 0 0 91
average time (sec) 0 0 1.0384e-04

Although MA2
3 might result in a few false negatives, Table II

indicates that its average computation time is drastically lower than
the corresponding average computation times of M1 and MA2

2 .

VI. CONCLUSIONS

In this paper we proposed scheduling techniques to guarantee
invariance for NCS consisting of uncertain constrained systems and
multiple communication channels. These techniques were used to
design offline schedules and online ones. The online schedules are
recursively feasible in presence of system uncertainties and packet
losses.

Future work will consider extending our framework to cover NCS
with coupled dynamics and the case of nodes modeled by the period
dwell-time switching signal, as in [25].

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems, vol. 21, no. 1, pp. 84–99, 2001.

[2] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target
sets and target tubes,” Automatica, vol. 7, no. 2, pp. 233–247, 1971.

[3] D. P. Bertsekas, “Infinite-time reachability of state-space regions by
using feedback control,” IEEE Trans. Autom. Control, vol. 17, pp. 604–
613, 1972.

[4] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in International Workshop on Hybrid Systems:
Computation and Control. Springer, 2004, pp. 477–492.

[5] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in International
Conference on Concurrency Theory. Springer, 1997, pp. 135–150.

[6] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design of
guaranteed safe maneuvers using reachable sets: Autonomous quadrotor
aerobatics in theory and practice,” in Robotics and Automation (ICRA),
2010 IEEE international conference on. IEEE, 2010, pp. 1649–1654.

[7] J. B. Rawlings, D. Bonné, J. B. Jorgensen, A. N. Venkat, and S. B.
Jorgensen, “Unreachable setpoints in model predictive control,” IEEE
Transactions on Automatic Control, vol. 53, no. 9, pp. 2209–2215, 2008.

[8] A. Gupta and P. Falcone, “Full-complexity characterization of control-
invariant domains for systems with uncertain parameter dependence,”
IEEE Control Systems Letters, vol. 3, no. 1, pp. 19–24, 2019.

[9] Y. Zhu, Z. Zhong, W. X. Zheng, and D. Zhou, “Hmm-based H∞
filtering for discrete-time markov jump lpv systems over unreliable
communication channels,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 12, pp. 2035–2046, 2017.

[10] L. Zhang, Y. Zhu, Z. Ning, and X. Yin, “Resilient estimation for
networked systems with variable communication capability,” IEEE
Transactions on Automatic Control, vol. 61, no. 12, pp. 4150–4156,
2016.

[11] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and
C. Peng, “Networked control systems: a survey of trends and tech-
niques,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp.
1–17, 2019.

[12] M. Chan and F. Chin, “General schedulers for the pinwheel
problem based on double-integer reduction,” IEEE Transactions on
Computers, vol. 41, no. 6, pp. 755–768, 1992. [Online]. Available:
http://dx.doi.org/10.1109/12.144627

[13] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The
pinwheel: A real-time scheduling problem,” in Proceedings of the Hawaii
International Conference on System Science, 1989, pp. 693–702.

[14] A. Colombo, M. Bahraini, and P. Falcone, “Measurement scheduling
for control invariance in networked control systems,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 3361–
3366.

[15] M. Bahraini, M. Zanon, A. Colombo, and P. Falcone, “Receding-horizon
robust online communication scheduling for constrained networked
control systems,” in 2019 18th European Control Conference (ECC).
IEEE, 2019, pp. 2969–2974.

[16] ——, “Optimal control design for perturbed constrained networked
control systems,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 553–
558, 2020.

[17] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[18] C.-C. Han, K.-J. Lin, and C.-J. Hou, “Distance-constrained scheduling
and its applications to real-time systems,” Transactions on Computers,
vol. 45, pp. 814–826, 1996.

[19] P. C. Fishburn and J. C. Lagarias, “Pinwheel scheduling: Achievable
densities,” Algorithmica, vol. 34, pp. 14–38, 2002.

[20] D. Chen and A. Mok, “The pinwheel: A real-time scheduling problem,”
in Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Champan & Hall, 2004, ch. 27.

[21] A. Bar-Noy and R. E. Ladner, “Windows scheduling problems for
broadcast systems,” SIAM Journal on Computing, vol. 32, no. 4, pp.
1091–1113, 2003.

[22] A. Bar-Noy, R. E. Ladner, and T. Tamir, “Windows scheduling as a
restricted version of bin packing,” ACM Transactions on Algorithms
(TALG), vol. 3, no. 3, p. 28, 2007.

[23] M. Margenstern, “Frontier between decidability and undecidability: a
survey,” Theoretical Computer Science, vol. 231, no. 2, p. 217, 2000.

[24] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 2008.
[25] Y. Zhu and W. X. Zheng, “Observer-based control for cyber-physical

systems with periodic dos attacks via a cyclic switching strategy,” IEEE
Transactions on Automatic Control, 2019.

